
Nipuna Senanayake





AI but Not ML: 
• Searching / Path finding Algorithms / Robotics
• Ontology Engineering / Semantic Web
• Prepositional / First order logic 

ML but not Deep Learning
• Regression
• Decision Tree
• SVM
• K-means
• KNN
• Neural networks (Few layers)

Deep Learning
• Deep NN
• CNN
• RNN
• LSTM 







§ Supervised Learning: Use of labeled dataset for training algorithms so that they 
can classify data or predict the outcome.

§ Label:  What we are predicting. The “y” variable in simple linear regression. The 
label could be the future price of wheat, the kind of animal shown in a picture, the 
meaning of an audio clip, or just about anything.

§ Feature: is an input variable—the x variable in simple linear regression. A simple 
machine learning project might use a single feature, while a more sophisticated 
machine learning project could use millions of features

§ Models: A model defines the relationship between features and label. For 
example, a spam detection model might associate certain features strongly with 
"spam".



§ Training:  
§ Creating or learning the model.
§ Showing model labeled examples and enable it to gradually learn the relationships between features and 

the label

§ Inference: 
§ Applying the trained model to unlabeled examples. (Using trained model for make useful predictions)
§ Classification: Predicts discrete values (Is a given email message spam or not spam?)
§ Prediction (Regression):  Predicts contiguous values (What is the value of a house in California? )







Stat/Math World Computing / ML World

𝑦 = 𝑚𝑥 + 𝑏 𝑦! = 𝑏 + 𝑤1𝑥1	
𝑦 = the temperature in 

Celsius the value we're 
trying to predict.

𝑦! = the 
predicted label (a 
desired output).

𝑏	=  the y-intercept. 𝑏 = is the bias (the y-
intercept), sometimes 
referred to as w0.

𝑚 = the slope of the 
line.

𝑥 = the number of 
chirps per minute, the 
value of our input 
feature.

𝑤1 = the weight of feature 
1. Weight is the same 
concept as the 
"slope" m in the 
traditional equation of a 
line.

𝑥1	= a feature (a known 
input).

𝑦! = 𝑏 + 𝑤1𝑥1	+ 𝑤2𝑥2+ 𝑤3𝑥3+⋯ (A complex model with multiple features)



§ New definition for “Training”:  learning/finding good values for weights and bias 
from labeled examples.

§ Loss: 
§ Penalty for wrong prediction.
§ Perfect prediction -> Zero loss, otherwise greater loss
§ Goal-> identifying set of weights and biases that have lower loss



§ Squared Error (L2 loss): 𝐿 = 𝑦	 − 𝑦′ !

§ Mean Squared Error (MSE)

MSE is a common error function in ML but probably not the most practical / best loss 
function in all situations!!



§ Hot and Cold game: 
§ Start with a wild guess (𝑤1 = 1)
§ Wait for the system to tell the loss 
§ Make another guess (𝑤1 = 0.5), what is the loss now?
§ Getting warmer or cold?
§ This goes on and on…

§ An iterative process to reach the best model



§ Simple Regression model with one feature

§ Random values for wight and bias!

§ Plugging them into prediction function:

§ Then use the loss function to calculate the loss. (Ex: the squared loss)

§ For now, let’s say: based on the loss value, system will calculate new 𝑏	𝑎𝑛𝑑	𝑤1 

§ This continues till the lowest loss is reached (loss stops changing / starts to change 
extremely slow)



§ Maths says: 
§ If we have enough resources to calculate loss for all possible w1,

§ For a regression problem, loss vs w1 will be convex all the time

• Convex function only has one minimum.

• It is when the slope is 0

• Calculating the loss for all possible w1 is very 
inefficient. So, gradient decent is to rescue!



§ Starting point for Gradient Decent 

• Does not really matter what the starting point is.

• Many algorithms just take w1=0 for simplicity.

• Here we take something little lower than 0.



§ Relies on negative gradient

• Gradient is a vector: has direction + magnitude

• Points to the steepest increase in the loss function

• Hence, GD takes a step in direction of negative 
gradient to reduce the loss as quick as possible!



§ GD taking the next step towards min loss

• GD algorithm adds some fraction of the 
gradient’s magnitude to the start point and gets 
the next point

• This process repeats until the loss gets close to 
zero



§ Determining the next step of GD : 
§ ∆ = Learning Rate * Gradient 
§ GD take the next point ∆ distance away

Too small learning rate ->
Too much time to finish learning



Too large learning rate ->
perpetually bounce haphazardly across the bottom of the well



• Optimizations: 

• Stochastic Gradient 
Decent (SGD) 

• Mini-batch SGD












